Páginas vistas en total

miércoles, 30 de mayo de 2012

8.3 Regulación de la transcripción en organismos eucarióticos.


8.3 Regulación de la transcripción en organismos eucarióticos.

Señales que modifican la transcripción

Los tipos de señales que pueden alterar la transcripción de un gen puede ser:
Señales hormonales que interaccionan con un receptor de la membrana. En la mayoría de los casos, la señal externa provoca la aparición del segundo mensajero intracelular. La cascada de transducción de señal subsiguiente produce un regulador de transcripción específico.
En el caso de las hormonas esteroideas, el receptor está dentro de la célula y es el conjunto hormona-receptor el que actúa de regulador.
Las señales nutricionales e iónicas suelen darse en eucariotas unicelulares solamente porque son los únicos a los que va a afectar el medio en el que están creciendo. La excepción se encuentra en los hepatocitos (es el regulador de la concentración sanguínea de muchos metabolitos) y las células en cultivo.

Contactos intercelulares especialmente durante el desarrollo embrionario. La sinapsis también pertenece a este grupo.

Proteínas que modulan la transcripción
En eucariotas, pueden actuar como reguladores tanto moléculas de RNA como proteínas. Entre las proteínas, las hay que forman parte de la holoenzima polimerasa (los factores de transcripción), otras intervienen en la remodelación de la cromatina y un tercer grupo se une al DNA para regular la transcripción, que es el que nos ocupa.

1.- Activadores transcripcionales
Los activadores son la proteínas que se van a unir a los elementos distales (SDE y potenciadores) para activar la transcripción. Son específicos de unos pocos promotores —por lo que no estarán en todos los tipos celulares—, reconocen entre 6 y 14 pb en el promotor y suelen tener dos dominios estructurales:
  • El dominio de unión a DNA (DNA binding domain) , que consta de 60 a 100 aminoácidos consecutivos.
  • El dominio de activación de la transcripción que consta de 30 a 100 aminoácidos que no tienen por qué ser consecutivos.
  • La presencia de estos dominios las convierte en proteínas modulares en las que el dominio de unión y el de activación pueden funcionar independientemente.

2.- Coactivadores y correpresores

La acción de un activador de transcripción (o de un represor) puede ejercerse directamente sobre el complejo basal (bien sobre la RNA-polimerasa, alguno de los TFII o los TAFII), o a través de una molécula intermediaria que puede ser un coactivador o un correpresor.
Se denomina coactivador si ayuda a activar la transcripción. Un mismo coactivador puede recibir señales de distintos activadores para transmitirlos hacia el complejo del promotor basal.
Se denomina correpresor si ayuda a inactivar el promotor. Los correpresores pueden tener actividad desacetilasa, con lo que hace que el DNA se una con más firmeza a los nucleosomas, inactivando el promotor porque no puede ser reconocido por los factores generales de transcripción. Entre los más conocidos podemos encontrar SMRT (correpresor del receptor de hormonas tiroideas) y N-Cor (correpresor del receptor hormonal nuclear), formados por un único péptido.

 

3.- Transactivadores




Son aquellos que directamente ejercen su acción interaccionando con el complejo de iniciación formado en el promtor basal, bien sobre la propia polimerasa o, más normalmente, sobre una de las TAF o de los TFII, para activar o reprimir la transcripción, puesto que no son actividades exclulyentes.

Potenciadores

La mayoría de los ejemplos anteriores son reguladores del tipo SDE (secuencias distales específicas). Pero la fuente de regulación más potente es al de los elementos distales: los potenciadores (enhancers o intensificadores). Su función es la de amplificar la transcripción del promtor incluso más de 1000 veces. Los hay específicos del tejido —sólo activan la transcripción de su gen en determinados tejidos—, específicos de la etapa de desarrollo e inducibles por alguna señal externa como hormonas, metales pesados, choque térmico, infección viral, etc. Necesitan la mediación de un coactivador.





Final del formulario

Silenciamiento de genes

La unión inespecífica de proteínas reguladoras es un problema importante en los organismos con genomas grandes. Para combatirla, los eucariotas han hecho que los genes tengan en torno a 5 dianas para proteínas reguladoras diferentes. Esta estrategia es útil para los activadores de la transcripción porque es una estrategia eficiente y ahorra esfuerzo. Una estrategia similar no es factible con los inhibidores de la transcripción, por lo que se da poca regulación por silenciamiento.
El silenciamiento de un gen puede ocurrir por:
  • la inactivación por interacción con un regulador
  • el silenciamiento génico postranscripcional (PTGS, también denominada cosupresión o extinción génica)
  • la metilación del DNA en vertebrados (directamente ligada al superenrollamiento y al silenciamiento).

 Inactivación mediante una proteína reguladora

Se consigue uniendo una proteína reguladora a cualquiera de los distintos elementos que forman los promotores.
Los que reconocen los elementos distales
• el silenciador específico de tejido (tse): se encarga de silenciar en cualquier célula los genes que son específicos de células hepáticas
• las hormonas esteroideas comentadas anteriormente
• el gen Pit-1
Los que reconocen los elementos proximales
• la proteína CDPC: recibe el nombre de «desplazamiento de CAAT» porque impide que la caja CAAT sea reconocida por sus proteínas específicas
Los que reconocen el promotor basal
• el represor global Dr1/DRAP1: es un heterodímero que se une a TBP para evitar que interactúe con TFIIB

 PTGS: silenciamiento génico postranscripcional

Consiste en la degradación específica de los mRNA complementarios de una de las hebras del dsRNA. Los mRNA degradados suelen ser transcritos aberrantes de diversos orígenes. También se denomina cosupresión o extinción (quelling). Este RNA aberrante es sustrato de una RNA-polimerasa dirigida por RNA que genera una larga molécula de dsRNA, conocida con el nombre de dsRNA desencadenante. Éste es fragmentado por la ribonucleasa Dícer en una serie de dsRNA de 21 a 25 nucleótidos de longitud denominados «RNA interferentes pequeños» (siRNA). Este siRNA se asocia a una serie de proteínas para formar el complejo RISC (RNA-induced silencing complex). En este complejo, una de las hebras del siRNA sirve de guía para localizar cualquier mRNA complementario presente en la célula con vistas a su destrucción mediante una endorribonucleasa del complejo RISC (tentativamente llamada slicer).
Se trata de un mecanismo extremadamente conservado entre los organismos eucariotas (protozoarios, mamíferos, plantas, peces, insectos, hongos, invertebrados y seres humanos) por lo que puede tratarse de un mecanismo de regulación y defensa que tuvo su origen en el mundo RNA. Desempeña un papel fundamental en varios procesos celulares:
  • Defensa contra la invasión de ácidos nucleicos intrusos (normalmente virus)
  • Integridad del genoma, y aque reprime la transposición de los elementos móviles
  • Destrucción de mRNA aberrantes que generarían desconcierto intracelular
  • Mantenimiento de las zonas superenrolladas (heterocromatina) del genoma (véase más adelante en el silenciamiento por metilación).
Mientras en algunos organismos (por ejemplo, en las células humanas) se manifiesta como un fenómeno transitorio (que cede con la desaparición del dsRNA exógeno desencadenante), en otros (plantas y nematodos), se amplifica y difunde hacia el resto de las células del organismo, pudiendo llegar a ser heredable, al menos por algunas generaciones (en Drosophila y en nematodos, pero no en plantas).


Silenciamiento por metilación

No todos los organismos tienen el DNA metilado. En los mamíferos, el DNA metilado forma heterocromatina a la que no pueden acceder los factores de transcripción. Por tanto, los genes metilados no se pueden transcribir ni tan siquiera residualmente. Se trata de un mecanismo muy eficiente de silenciamiento génico que, además, disminuye la cantidad de DNA que los factores de transcripción y la RNA-polimerasa tienen que rastrear para buscar los promotores.
Algo menos del 5% de las citosinas se encuentran metiladas en el genoma. De ellas, la más abundante es la 5-metil-citosina. Esta metilación aparece casi exclusivamente sobre la secuencia CG en lo que se denomina islotes CpG. Los islotes CpG son secuencias de aproximadamente 1 kpb cuya riqueza en el doblete CpG es mayor que en el resto del genoma. Los genes se expresan muy intensamente cuando sus islotes CpG están poco metilados (hipometilados), mientras que no se expresan si están hipermetilados.
Es muy frecuente que a este tipo de regulación se le denomine regulación epigenética.


La regulación de la expresión génica en los eucariontes

9. La expresión de los genes eucariontes puede estar regulada en diferentes etapas:
- La transcripción.
- El procesamiento del mRNA transcrito.
- El transporte del mRNA del núcleo al citoplasma.
- La degradación del mRNA.
- La actividad de las proteínas (activación e inactivación).
10. Los factores basales de la transcripción son un grupo de proteínas necesarias en la transcripción. Los factores reguladores de la transcripción son otro grupo de proteínas que se unen a los enhancers y a la maquinaria transcripcional. La expresión génica diferencial desempeña un papel fundamental en el proceso de diferenciación celular.
11. El mRNA transcrito primario es procesado y se convierte en un mRNA maduro que es transportado al citoplasma, donde es traducido a proteínas. Los mRNA que debido a errores cometidos por la RNA polimerasa contienen codones de terminación prematuros son destruidos mediante un mecanismo llamado degeneración o decaimiento del mRNA.
12. El control postranscripcional de los mRNA es clave en la regulación de la expresión génica. Regula tanto la estabilidad del mensajero como su localización, controlando temporal y espacialmente la traducción de las proteínas codificadas.
13. En el citoplasma de muchos tipos celulares se forman estructuras granulares, compuestas por ciertos RNA y proteínas. Estas estructuras estarían involucradas en el destino de los mRNA.
14. Los gránulos de estrés son estructuras constituidas también por RNA y proteínas, que se forman en condiciones ambientales atípicas y disminuyen la síntesis de las proteínas de mantenimiento.
15. La degradación de los mRNA impide la síntesis permanente de proteínas. El proceso implica la eliminación del poli-A y el CAP, seguido por la acción de exonucleasas. La invasión por virus suele disparar la síntesis de RNA "antisentido", que hibrida con el mRNA normal e impide su traducción.
15. Los organismos transgénicos son aquellos que incorporaron información genética nueva, por agregado de DNA ajeno. El gen incorporado se denomina transgén.


BIBLIOGRAFIA


http://www.curtisbiologia.com/node/119 
http://www.biologia.edu.ar/adn/adntema4.htm#Regulacion


CONCLUSIONES

Las conclusiones de la unidad número 8 que es la regulación de la expresión genética, como siempre se concluyo el objetivo planteado al inicio de la unidad, la cual se finalizo con un examen para evaluar los conocimientos que se obtuvieron en la unidad correspondida. En esta unidad se aprecio información de cómo se da la regulación de la expresión de genes tanto en organismos procariontes y organismos eucariotas, ambos tienen diferentes estrategias para la regulación. En bacterias la estrategia que utilizan se llama operones un positivo y un negativo y que puede ser un operon lactosa o un operon triptófano que son: Un  grupo de genes estructurales cuya expresión está regulada por los mismos elementos de control (promotor y operador) y genes reguladores. Una característica muy importante es de que las bacterias dependen del medio circundante para llevar a cabo la expresión genética. A diferencia de los eucariotas la expresión está regulada por proteínas especificas, que son proteínas activadoras de la transcripción, que gracias a estas proteínas se lleva a cabo este proceso, otra característica es de que en eucariotas la regulación de la expresión genética es compleja a diferencias de las procariotas, ya las eucariotas utilizan una estrategia más especifica controlada por proteínas especificas. Como vemos pudimos observar y entender las estrategias que utilizan ambos organismos, para la regulación de la expresión genética.






No hay comentarios:

Publicar un comentario